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INTRODUCTION

The enhancement of the local economy with-
in a region is often associated with development 
and implementation of various public infrastruc-
tures [Gibson et al., 2019; Thacker et al., 2019]. 
As rightly observed in a previous investigation, 
development of public infrastructure significantly 
influenced several aspects of the lives of residents 
in a community. This type of development was 
observed to result in an escalation of consump-
tion value, subsequently leading to a significant 
rise in both employment opportunities and labor 

productivity. Accordingly, an increase in these 
aspects have been observed to have a substantial 
and positive impact on the economy as well as 
welfare of communities [Suminar et al., 2016]. 
Infrastructure includes the facilities developed 
by public agencies for various purposes. These 
facilities include transportation, water supply, 
electric power, waste disposal and other services 
established to foster various social and economic 
objectives [Thacker et al., 2019; Devitama et al., 
2020; Syalianda and Kusumastuti, 2021]. De-
velopment initiatives can have both favorable 
and adverse effects on the lives of individuals, 
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particularly when it occurs in suburban or rural 
areas that are not traditionally economic centers. 
For instance, the construction of New Yogyakarta 
International Airport (NYIA) in Kulon Progo Re-
gency, situated on the outskirts of the Temon sub-
district, had both positive and adverse effects on 
the community in which it was built [Rachmawati 
et al., 2019; Rahmayanti et al., 2019]. This airport 
was developed with the sole purpose of spurring 
economic growth and enhancing the local eco-
nomic well-being of the community where it is 
located. Furthermore, its development aimed to 
maximize international tourist arrivals, which 
have previously been underused, with the goal 
of boosting the regional income from the tourism 
sector [Kadarisman, 2019; Utami et al., 2021]. 

The construction of NYIA began with land 
acquisition and was completed in March 2018. 
This process triggered several controversies, with 
certain impacted residents, who were affiliated 
with Wahana Tri Tunggal (WTT), expressing their 
opposition to the development in Glagah Village 
and Palihan Village. The main concern of these 
individuals was that the construction of the airport 
would eventually displace lands, and these lands 
had been their source of livelihood. However, 
some residents supported the construction of NYIA 
and this was primarily because of the substantial 
compensation made available. The construction 
of this airport substantially affected the residents 
in five villages, including Glagah, Kebonharjo, 
Palihan, Sindutan, and Jangkaran. This impact 
was substantial, affecting 19 hamlets and approxi-
mately 2,700 families, as well as leading to the 
conversion of 4,400 plots of land. It is important 
to acknowledge that after NYIA began operating 
in March 2020, a significant increase in urban de-
velopment was observed in its vicinity, including 
the construction of hotels, shops, and other pub-
lic infrastructure. Currently, three hotel buildings 
stand in front of NYIA exit. As rightly stated in 
previous research, this rapid urbanization has the 
potential to engender environmental issues. This 
is evidenced by the fact that uncontrolled changes 
in land cover can impact environmental quality 
by influencing such factors as microclimate, land 
subsidence, and flood disasters, among other envi-
ronmental concerns [Yang and Zeng, 2018; Majidi 
et al., 2019; Zamroni et al., 2021]. Therefore, it is 
essential to monitor the changes in land cover re-
sulting from the impact of NYIA development as 
a means of regulating and ensuring environmental 
quality. In this research, the data reflecting these 

land cover alterations were subsequently used to 
forecast the future land cover development in the 
area, using remote sensing technology and raster-
based modeling. This predictive data played an 
important role in the formulation or adjustment of 
Regional Spatial Plans.

Land cover change analysis and built-up lands 
development predictions were conducted using the 
remote sensing technology. In this regard, Landsat 
8 time series image data was leveraged to detect 
the changes in land cover, especially in built-up 
areas [Karra et al., 2021]. The prediction regard-
ing the expansion of the built-up lands were made 
through the application of Cellular Automata (CA) 
modeling [ Yeh et al., 2021; Agustina et al., 2022]. 
This form of modeling refers to the use of a dy-
namic model that simulates the local interactions 
between cells within a grid. In this context, each 
cell represented a specific land use, and the chang-
es were highly influenced by rules that take into 
account the land use of neighboring cells [George 
et al., 2021; Grattarola et al., 2021]. As rightly es-
tablished by previous examinations, the CA model 
relies on its main components, which include state 
cells, rules or change functions (transition rules 
or transition functions), and the consideration of 
neighboring cells [Bobkov et al., 2021]. The aim 
of this research was to analyze the shifts in the 
usage of land cover in the vicinity of NYIA, with 
a particular emphasis on seven sub-districts that 
were expected to be impacted by the presence of 
the airport. Additionally, the research was carried 
out to forecast the future trends in the develop-
ment of urban land in the area. This exploration is 
particularly urgent as its primary goal is centered 
on the continuous monitoring of the growth of 
built-up lands in the research area. This monitor-
ing allows for effective control over development 
processes and ensures that these processes are not 
solely economically driven but also consider the 
environmental conditions of the region.

METHODOLOGY

This research was conducted in the immediate 
vicinity of Temon Sub-district, which is presently 
home to NYIA. This area comprises Temon, Ko-
kap, Panjatan, Pengasih, and Wates sub-districts 
within Kulon Progo Regency, as well as Bagelen 
and Purwodadi sub-districts in Purworejo Regen-
cy. A visual representation of the research sites is 
shown in Figure 1.
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Land cover map processing

Data collection and analysis for generating 
land cover time series in the research area were 
conducted using the Google Earth Engine (GEE) 
platform via the code.earthengine.google.com 
webpage. For this analysis, the satellite image 
data used for land preparation were obtained from 
Landsat 8, captured in 2013, 2017, and 2023, and 
sourced from the United States Geological Sur-
vey (USGS) with Reflectance Tier 1 data level. 
Furthermore, the selection of image recording 
times was determined based on recording inter-
vals. In accordance with previous investigations, 
GEE incorporated cloud removal and median 
algorithms and ensured that the satellite images 
used were cloud-free and accurate representatives 
of the conditions during the chosen periods [Fariz 
and Nurhidayati, 2020]. The Landsat 8 USGS 
Surface Reflectance Tier 1 images used were 
readily usable. This was primarily because the 
images were orthorectified and their reflectance 
was calibrated. Specifically, the input leveraged 
in this research consisted of bands 1, 2, 3, 4, 5, 6, 
and 7. These bands were used primarily because 
of their observed superior accuracy when com-
pared to using other bands (excluding panchro-
matic and cirrus) in Landsat 8 imagery [Yu et al., 
2019: Fariz and Nurhidayati, 2020]. 

The process of mapping land cover time 
series relied solely on machine learning-based 

supervised classification. As established in 
a previous study, one of the key strengths of 
machine learning is its ability to manage high-
dimensional data, such as remote sensing data, 
and its potential to effectively categorize data-
points into multiple classes with intricate char-
acteristics [Maxwell et al., 2018]. The machine 
learning algorithms from GEE leveraged in this 
exploration include RF (Random Forest) and 
CART (Classification and Regression Tree). It is 
important to acknowledge that these algorithms 
had quite good accuracy for land cover map-
ping compared to others, such as SVM [Wahap 
and Shafri, 2020; Kulithalai Shiyam Sundar and 
Deka, 2022; Abubakar et al., 2023].

Research sample

In this research, the land cover map was sim-
plified into four primary classes, namely built-up 
land, mixed forests and gardens, open land, and 
agricultural land (as detailed in Table 1). This 
classification was necessitated by the constraints 
of selecting homogeneous Regions of Interest 
(ROIs) from Landsat images with a spatial reso-
lution of 30 meters. Accordingly, it is crucial to 
establish that the process of multispectral classi-
fication through machine learning requires an ad-
equate number of training samples (ROIs). In this 
case, 50 sample points (pixels) were collected for 
each land cover class, taking into account that the 

Fig. 1. Research sites
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total number of land cover classes being mapped 
was fewer than 12 [Lillesand et al., 2004]. In ad-
dition to the training samples, test samples were 
also gathered to evaluate the accuracy of the 
classification results using the kappa index. This 
research incorporated a total of 170 test sample 
points (pixels) consisting of high-resolution sat-
ellite imagery. These images served as the refer-
ence or test reference in this research, acting as a 
base map within GEE. Some of these data points 
were obtained from field surveys, and in the cases 
where differences in appearances arose due to 
variations in recording times, the Landsat 8 imag-
ery was used as the reference. 

Driving factors

Driving factors are crucial variables in con-
structing a transition probability model. In this 
exploration, the driving factors considered were 
pre-existing variables that contributed to the ex-
pansion of built-up lands. It is important to ac-
knowledge that each region may possess unique 
geographical conditions, resulting in variations 
in the driving factors for built-up land develop-
ment. However, there are generally recognized 
driving factors that exert a significant influence 
on land change in Indonesia, including prox-
imity to roads, distance from existing built-up 
areas, topography, and distance from essential 
facilities. These factors have been found to play 
a substantial role in shaping land development 
patterns [Nurhidayati et al., 2017; Susilo, 2017; 
Saputra and Lee, 2019; Yogi et al., 2022]. As 
previously mentioned, this research was con-
ducted in specific areas within the Kulon Progo 
Regency and Purworejo Regency. In these re-
gions, a very significant phenomenon of rising 
land prices, particularly in the vicinity of Ja-
lan Lingkar Selatan (JLS) and NYIA has been 
observed in previous investigations [Edy et 
al., 2021]. Accordingly, in the research related 
to the prediction of changes in land cover, the 

driving factors considered include proximity 
to roads, existing built-up areas, markets, air-
ports, and population density [Hendrayana et 
al., 2023]. This present exploration, on the other 
hand, did not include topographic factors, even 
though topography can indeed have a signifi-
cant influence on the development in the region 
[Pravitasari et al., 2021].

In this research, the driving factors consid-
ered comprised distance from roads, proxim-
ity to facilities and airports, and distance from 
existing built-up land. The topographic factors 
were analyzed through cost distance analysis, 
setting this research apart from the method tak-
en in the study by Sukri et al. [2023] and Hen-
drayana et al. [2023] which was solely centered 
on the use of Euclidean distance. Cost Distance 
is a valuable feature that has been leveraged in 
the computing of distance to the nearest source 
for each cell while taking into account specified 
costs from a cost surface. This method has been 
found to be superior to Euclidean distance, be-
cause it accurately reflects complex land cover 
considerations, particularly topographic factors 
[Xia et al., 2019; Pazúr et al., 2020]. 

Land cover prediction

Prediction of land cover was obtained for both 
2023 and 2033. Specifically, for the 2023 predic-
tion, the results were compared with the classifica-
tion outcomes of the existing land cover map. For 
this prediction process conducted through Cellu-
lar Automata (CA), QGIS software was utilized, 
which incorporated the MOLUSCE plug-in. The 
prediction process comprised several stages, be-
ginning with the input data, which included land 
cover maps and multiple driving factors. These 
variables have been observed to be instrumental 
in constructing transition probability models. In 
MOLUSCE, transition probability models can 
be created using various methods, such as Artifi-
cial Neural Network (ANN), Logistic Regression 

Table 1. Land cover class used in research sites
Land cover Operational limitations

Built-up The land cover consists of buildings with clay roofs, including residential areas, trade and 
service buildings, government infrastructure, and other built-up land

Forests and mixed gardens Woody vegetation land cover such as dry land forests, community forests, and mixed 
gardens

Open field Land cover consists of open soil such as sand and embankment

Agricultural land Non-woody vegetation land cover such as moorland, and rice fields
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(LR), and Weight of Evidence (WoE). Typically, 
the WoE method is determined through expert 
justification, while the ANN and LR rely solely 
on computational methods. For this exploration, 
the ANN method was adopted because several 
studies show its effectiveness in predicting land 
cover changes [Xu et al., 2019; Wayan Gede 
Krisna Arimjaya and Dimyati, 2022]. A flow dia-
gram of the research is shown in Figure 2.

RESULT AND DISCUSSION

Land cover map accuracy test

The land cover map, which was generated 
through classification in the research area, was 
assessed for accuracy before being used for sub-
sequent analyses. This accuracy test was conduct-
ed using two methods, namely Overall Accuracy 
(OA) and Kappa Accuracy (KA). Accordingly, 
the results of the accuracy tests performed on the 

land cover time series showed that the land cover 
map with the highest accuracy was achieved using 
the Random Forest machine learning algorithm, 
both for mapping in 2017 and 2023 (as presented 
in Table 2). Following the observations of previ-
ous investigations, random Forest stands out as 
the most effective machine learning method due 
to its consistency, non-linearity, and capacity to 
produce the classification results that are resilient 
to noise [Pelletier et al., 2015]. The results of time 
series land cover mapping accuracy tests using 
machine learning are presented in Table 2.

In general, all machine learning methods 
tested had an accuracy exceeding 0.80. How-
ever, upon closer examination, some misclas-
sifications were observed, particularly between 
open and built-up lands. This phenomenon oc-
curred primarily because a significant portion 
of built-up land in the research area consisted 
of village settlements, comprising houses with 
yards or mixed gardens (as shown in Figure 3). 

Fig. 2. Research flow chart
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The presence of these heterogeneous features led 
to a blend of spectral responses, making it chal-
lenging to distinguish between built-up lands, 
vegetation, and vacant lands. Consequently, these 
mixed pixels contributed to the misclassifications 
observed [He et al., 2010], and presented a sig-
nificant limitation and challenge in the mapping 
research of built lands in Indonesia [Nur Hidayati 
et al., 2019]. Fig. 3 presents a comparison of the 
appearance of village settlements on the Landsat 
8 and Maxar images. The choice of training sam-
ples is a critical factor in ensuring the accuracy 
of mapping results. In this context, these samples 
should accurately represent each land cover class 
and be devoid of mixed pixels. If classification 
results are still unsatisfactory, particularly in the 
cases such as the confusion between vegetations 
and built-up lands, the solution is to resort to vi-
sual interpretation. However, it is important to 
consider the fact that visual interpretation is less 
efficient in terms of processing time but can of-
ten lead to more precise and reliable results when 
dealing with complex or ambiguous land cover 
scenarios [Nur Hidayati et al., 2018].

Land cover change

The land cover classification in the research 
area consisted of four primary classes namely 
built-up lands, mixed forests and gardens, open 
lands, and agricultural lands. According to the 
classification results, the land coverage in 2023 
at the research location was predominantly 

composed of mixed forests and gardens, span-
ning an area of approximately 19,336.55 hect-
ares (54.01%). Furthermore, a significant portion 
of this land coverage was distributed in Kokap 
District and Bagelen District with an area of 
5,800.71 and 4,660.63 hectares respectively. 
Built-up lands, on the other hand, showed highly 
dynamic development, and by the end of 2023, 
they were projected to occupy an approximate 
area of 1,417.49 hectares (3.96%). The largest 
spatial distribution of built-up lands was ob-
served in Temon and Purwodadi Districts, with 
an area of 426.80 and 372.69 hectares, respec-
tively. Accordingly, the expansion of built-up 
lands in Temon district can be attributed to the 
presence of NYIA, among other factors. Infor-
mation on changes in land cover at the research 
location is presented in Table 2 and Figure 4. 

The analysis of changes in land cover at the 
research location, based on Landsat 8 image clas-
sifications from 2013, 2017, and 2023, aimed to 
identify the impact of the establishment of NYIA 
in the Temon sub-district area. The results of this 
analysis showed that built-up lands have experi-
enced the most rapid development in the research 
location. Between 2013 and 2017, an increase 
of approximately 572.38 hectares was observed, 
with the largest expansion occurring in the Pur-
wodadi district, which amounted to approxi-
mately 235.47 hectares. This was followed by 
Temon district, which accounted for an increase 
of approximately 179.19 hectares. This trend was 
found to progressively continue in the period 

Table 2. Land cover mapping accuracy test results using machine learning

Machine learning
2013 2017 2023

OA Kappa OA Kappa OA Kappa

CART 0.86 0.80 0.84 0.77 0.82 0.74

RF 0.81 0.72 0.86 0.80 0.91 0.86

Note: processing results, 2023.

Fig. 3. Appearance comparison of village settlements
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Table 3. Land cover time series of research locations

No Land cover
2013 2017 2023

Area (ha) % Area (ha) % Area (ha) %

1 Built-up 576.14 1.61 1148.52 3.21 1417.49 3.96

2 Forests and mixed gardens 19571.71 54.67 19433.89 54.29 19336.55 54.01

3 Open field 965.98 2.70 949.49 2.65 931.43 2.60

4 Agricultural land 14685.65 41.02 14267.58 39.85 14114.01 39.43

Total 35799.48 100 35799.48 100 35799.48 100

Note: Landsat 8 image processing.

from 2017 to 2023, with built-up lands expand-
ing by 268.97 hectares, and the majority of this 
increase was observed in Wates sub-district, total-
ing an increase of approximately 150.98 hectares. 
As a result, it can be seen that the total growth in 
built-up land area at the research location from 
2013 to 2023 was approximately 841.35 hectares. 
The expansion of these lands in Purwodadi Sub-
district between 2013 and 2017 was primarily 
influenced by the development of the Jalan Ling-
kar Selatan (JLS), which led to the urbanization 
of agricultural lands to built-up areas along the 
JLS. Meanwhile, Temon sub-district was found 
to experience the most substantial increase in 
built-up lands, and this was largely attributed to 
development of NYIA. This is evident from the 
concentration of the new built-up lands around 
the airport, which primarily comprised trade and 
service structures and infrastructure, such as ho-
tels, shops, restaurants, and various other build-
ings. A comprehensive overview of development 
and appearance of built-up land cover around the 
research location is presented in Table 4.

The rapid development of built-up lands in an 
area inevitably leads to the conversion of other 
land cover types, and if left uncontrolled, can re-
sult in a decline in environmental quality [Sanjoto 
et al., 2020]. This phenomenon is evident in the 
research location, where the level of urbanization 
around NYIA has led to rapid land conversion. 
Accordingly, the most affected land cover in this 
area corresponded to agricultural lands, which 
witnessed a reduction of approximately 418.07 
hectares from 2013 to 2017 and a subsequent de-
crease of around 153.37 hectares from 2017 to 
2023. More lands have also been urbanized from 
mixed forests and gardens, causing a decrease in 
area of approximately 235.16 hectares from 2013 
to 2023. It is important to acknowledge that the 
decline in agricultural land areas was most pro-
nounced in three sub-districts, namely Purwodadi 

(242.21 hectares), Temon (163.37 hectares), and 
Wates (63.26 hectares). These changes in the use 
of agricultural lands have been observed to ad-
versely impact the agricultural productivity in the 
region, particularly in the three sub-districts that 
possess productive agricultural lands with irri-
gated rice fields capable of yielding two harvests 
per year. Table 4 presents the information on the 
changes observed with regard to land use at the 
research location.

Land cover prediction

Prediction of land cover changes at the re-
search location was carried out using the CA 
method. This method includes the use of a transi-
tion probability model constructed by leveraging 
artificial neural network (ANN). ANN creates a 
transition probability model by leveraging the 
function and non-linear weighting of each driving 
factor within a network, thereby enabling the ac-
curate forecasting of land cover changes [Ghara-
ibeh et al., 2020]. Furthermore, the network in 
ANN imitates human brain tissue by the use of 
interconnected artificial neurons. This method 
operates through a process of learning and re-
call, repeatedly analyzing a phenomenon until 
it achieves a pattern with high accuracy and low 
root mean square error (RMSE) [Li et al., 2013]. 
In this regard, the results of land cover prediction 
for 2023, which were generated using ANN, were 
subjected to accuracy testing against the land 
cover maps produced through machine learning-
based supervised classification. The accuracy test 
showed that prediction results had an accuracy 
rate of 97%. Through the contingency table cal-
culation, it was also observed that the predicted 
results included a total of 181.25 hectares of both 
misses and false alarms. In terms of land cover 
prediction for 2033, prediction was made that the 
coverage of built-up lands will increase by 386.08 
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Fig. 4. Land cover time series 2013 (a), 2017 (b) and 2023 (c)

a)

a)

b)

c)
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Table 4. Land cover changes data for each district in the research sites
Kokap sub-district Years/area (hectar)

Land cover 2013 2017 2023

Built-up 4.81 8.95 10.26

Forests and mixed gardens 5803.34 5801.26 5800.71

Open field 15.43 24.87 15.04

Agricultural land 1107.77 1105.73 1104.92

Wates sub-district

Land cover 2013 2017 2023

Built-up 230.15 284.19 338.05

Forests and mixed gardens 1192.07 1174.33 1154.65

Open field 67.78 95.23 58.78

Agricultural land 1380.45 1350.29 1317.19

Temon sub-district

Land cover 2013 2017 2023

Built-up 96.63 275.82 426.8

Forests and mixed gardens 1233.35 1152.81 1092.08

Open field 353.81 403.24 328.03

Agricultural land 2356.33 2266.26 2192.96

Pengasih sub-district

Land cover 2013 2017 2023

Built-up 47.04 63.50 86.09

Forests and mixed gardens 3258.19 3252.99 3243.85

Open field 20.72 76.13 19.59

Agricultural land 2008.63 1997.86 1984.45

Panjatan sub-district

Land cover 2013 2017 2023

Built-up 57.72 83.84 86.71

Forests and mixed gardens 2417.97 2401.16 2398.5

Open field 217.12 228.81 216.56

Agricultural land 1731.07 1722.09 1721.77

Purwodadi sub-district

Land cover 2013 2017 2023

Built-up 113.10 348.57 372.69

Forests and mixed gardens 1002.31 990.27 986.11

Open field 287.26 456.56 281.63

Agricultural land 4570.33 4347.92 4328.12

Bagelen sub-district

Land cover 2013 2017 2023

Built-up 26.66 83.63 98.87

Forests and mixed gardens 4664.45 4661.05 4660.63

Open field 3.91 66.06 0.34

Agricultural land 1531.04 1477.40 1464.56

Note: source – Landsat 8 time series image processing.
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Table 5. Land cover prediction data 2023 and 2033

No Land cover
2023 (eksisting) 2023 (prediction) 2033 (prediction)

Area (ha) % Area (ha) % Area (ha) %

1 Built-up 1417.49 3.96 2655.46 5.04 2655.46 7.42

2 Forests and mixed gardens 19336.55 54.01 19301.95 53.92 19904.31 53.34

3 Open field 931.43 2.60 915.95 2.62 915.95 2.56

4 Agricultural land 14114.01 39.43 13133.76 38.43 13133.76 36.69

Total 35799.48 100 35799.48 100 35799.48 100

Note: source – processing results, 2023.

Fig. 5. Land cover prediction map 2023 (5a) and 2033 (5b)

a)

b)
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hectares. The primary land cover converted dur-
ing this period was agricultural lands, with an 
area of approximately 356.82 hectares. Table 5 
and Figure 5 present the information on the land 
cover prediction at the research location.

CONCLUSIONS

On the basis of the obtained research results, 
several key conclusions were drawn. The rapid 
development of built-up lands was a prominent 
trend in the research location. Between 2013 and 
2017, it expanded by 572.38 hectares, and from 
2017 to 2023, it increased by approximately 
268.97 hectares. Furthermore, it was found that 
the majority of this expansion occurred in the 
Temon and Purwodadi sub-districts. The most 
significant land cover conversion observed dur-
ing this development was the urbanization of 
agricultural lands, totaling 571.64 hectares. The 
land cover prediction for 2033, generated using 
CA, showed an increase of approximately 386.08 
hectares of built-up land. Prediction emphasized 
that the primary land cover that would be convert-
ed during this period includes agricultural lands, 
with an area of approximately 356.82 hectares. 
Moreover, the accuracy test results showed that 
prediction accuracy for the 2023 land cover map 
was 97%. Lastly, the research results can be fur-
ther developed into an index for assessing the cur-
rent environmental quality. This index can serve 
as a foundation for ongoing monitoring of the en-
vironmental conditions in the vicinity of NYIA.
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